2,167 research outputs found

    Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-Forming Galaxies at Redshifts z~4, 3, and 2

    Get PDF
    We introduce a very deep, R_lim~27, multicolor imaging survey of very faint star-forming galaxies at z~4, z~3, z~2.2, and z~1.7. This survey, carried out on the Keck I telescope, uses the very same UGRI filter system that is employed by the Steidel team to select galaxies at these redshifts, and thus allows us to construct identically-selected, but much fainter, samples. However, our survey reaches ~1.5 mag deeper than the work of Steidel and his group, letting us probe substantially below the characteristic luminosity L* and thus study the properties and redshift evolution of the faint component of the high-z galaxy population. The survey covers 169 square arcminutes in three spatially independent patches on the sky and -- to R<~27 -- contains 427 GRI-selected z~4 LBGs, 1481 UGR-selected z~3 LBGs, 2417 UGR-selected z~2.2 star-forming galaxies, and 2043 UGR-selected z~1.7 star-forming galaxies. In this paper, the first in a series, we introduce the survey, describe our observing and data reduction strategies, and outline the selection of our z~4, z~3, z~2.2, and z~1.7 samples.Comment: To appear in Ap

    Tracking the impact of environment on the galaxy stellar mass function up to z ~ 1 in the 10 k zCOSMOS sample

    Get PDF
    We study the impact of the environment on the evolution of galaxies in the zCOSMOS 10 k sample in the redshift range 0.1 ≀ z ≀ 1.0 over an area of ~1.5 deg^2. The considered sample of secure spectroscopic redshifts contains about 8500 galaxies, with their stellar masses estimated by SED fitting of the multiwavelength optical to near-infrared (NIR) photometry. The evolution of the galaxy stellar mass function (GSMF) in high and low density regions provides a tool to study the mass assembly evolution in different environments; moreover, the contributions to the GSMF from different galaxy types, as defined by their SEDs and their morphologies, can be quantified. At redshift z ~ 1, the GSMF is only slightly dependent on environment, but at lower redshifts the shapes of the GSMFs in high- and low-density environments become extremely different, with high density regions exhibiting a marked bimodality, not reproducible by a single Schechter function. As a result of this analysis, we infer that galaxy evolution depends on both the stellar mass and the environment, the latter setting the probability of a galaxy to have a given mass: all the galaxy properties related to the stellar mass show a dependence on environment, reflecting the difference observed in the mass functions. The shapes of the GSMFs of early- and late-type galaxies are almost identical for the extremes of the density contrast we consider, ranging from isolated galaxies to rich group members. The evolution toward z = 0 of the transition mass M_(cross), i.e., the mass at which the early- and late-type GSMFs match each other, is more rapid in high density environments, because of a difference in the evolution of the normalisation of GSMFs compared to the total one in the considered environment. The same result is found by studying the relative contributions of different galaxy types, implying that there is a more rapid evolution in overdense regions, in particular for intermediate stellar masses. The rate of evolution is different for sets of galaxy types divided on the basis of their SEDs or their morphologies, tentatively suggesting that the migration from the blue cloud to the red sequence occurs on a shorter timescale than the transformation from disc-like morphologies to ellipticals. Our analysis suggests that environmental mechanisms of galaxy transformation start to be more effective at z < 1. The comparison of the observed GSMFs to the same quantities derived from a set of mock catalogues based on semi-analytical models shows disagreement, in both low and high density environments: in particular, blue galaxies in sparse environments are overproduced in the semi-analytical models at intermediate and high masses, because of a deficit of star formation suppression, while at z < 0.5 an excess of red galaxies is present in dense environments at intermediate and low masses, because of the overquenching of satellites

    Photometric Redshifts for an Optical/Near-Infrared Catalogue in the Chandra Deep Field South

    Get PDF
    Photometric redshifts have proven a powerful tool in identifying galaxies over a large range of lookback times. We have been generalising this technique to incorporate the selection of candidate high redshift QSOs. We have applied this to a large optical/near-infrared imaging survey in 6 wavebands aiming to push farther in redshift (and fainter in luminosity) than previous studies. We believe that study of these very faint and distant objects provides valuable insights into galaxy formation and evolution. Here we present work in progress and preliminary results for a catalogue of objects detected as part of the Las Campanas Infrared Survey. This is a stepping stone to the type of survey data that will become available in the next few years from projects such as UKIDSS and VISTA.Comment: 4 pages LaTeX, submitted to the "Eurokiel 2002: Galaxy Evolution III: From Simple Models to Self Consistant Approaches" Conference Proceeding

    A Test of Photometric Redshifts for X-ray Selected Sources

    Full text link
    We test the effectiveness of photometric redshifts based upon galaxy spectral template fitting for X-ray luminous objects, using a sample of 65 sources detected by Chandra in the field of the Caltech Faint Galaxy Redshift Survey (CFGRS). We find that sources with quasar-dominated spectra (for which galaxy spectral templates are not appropriate) are easily identified, and that photometric redshifts are robust for the rest of the sources in our sample. Specifically, for the 59 sources that are not quasar-dominated at optical wavelengths, we find that the photometric redshift estimates have scatter comparable to the field galaxy population in this region. There is no evidence for a trend of increasing dispersion with X-ray luminosity over the range L_X = 10^39 - 5x10^43 erg/s, nor is there a trend with the ratio of X-ray to optical flux, f_X/f_R. The practical implication of this work is that photometric redshifts should be robust for the majority (~90%) of the X-ray sources down to f_X ~ 10^-16 erg/s/cm^2 that have optical counterparts brighter than R ~ 24. Furthermore, the same photometry can be easily used to identify the sources for which the photometric redshifts are likely to fail. Photometric redshift estimation can thus be utilized as an efficient tool in analyzing the statistical properties of upcoming large Chandra and XMM-Newton data sets and identifying interesting subsamples for further study.Comment: To appear in ApJ (6 pages, 6 figures). Replaced with accepted versio

    ANNz: estimating photometric redshifts using artificial neural networks

    Get PDF
    We introduce ANNz, a freely available software package for photometric redshift estimation using Artificial Neural Networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the r.m.s. redshift error in the range 0 < z < 0.7 is 0.023. Non-ideal conditions (spectroscopic sets which are small, or which are brighter than the photometric set for which redshifts are required) are simulated and the impact on the photometric redshift accuracy assessed.Comment: 6 pages, 6 figures. Replaced to match version accepted by PASP (minor changes to original submission). The ANNz package may be obtained from http://www.ast.cam.ac.uk/~aa

    Photometric redshift of the GRB 981226 host galaxy

    Full text link
    No optical afterglow was found for the dark burst GRB 981226 and hence no absorption redshift has been obtained. We here use ground-based and space imaging observations to analyse the spectral energy distribution (SED) of the host galaxy. By comparison with synthetic template spectra we determine the photometric redshift of the GRB 981226 host to be z_phot = 1.11+/-0.06 (68% confidence level). While the age-metallicity degeneracy for the host SED complicates the determination of accurate ages, metallicity, and extinction, the photometric redshift is robust. The inferred z_phot value is also robust compared to a Bayesian redshift estimator which gives z_phot=0.94+/-0.13. The characteristics for this host are similar to other GRB hosts previously examined. Available low resolution spectra show no emission lines at the expected wavelengths. The photometric redshift estimate indicates an isotropic energy release consistent with the Amati relation for this GRB which had a spectrum characteristic of an X-ray flash.Comment: Accepted for publication in ApJ Letter

    The prompt optical/near-infrared flare of GRB 050904: the most luminous transient ever detected

    Get PDF
    With a redshift of z=6.295, GRB 050904 is the most distant gamma-ray burst ever discovered. It was an energetic event at all wavelengths and the afterglow was observed in detail in the near-infrared bands. We gathered all available optical and NIR afterglow photometry of this GRB to construct a composite NIR light curve spanning several decades in time and flux density. Transforming the NIR light curve into the optical, we find that the afterglow of GRB 050904 was more luminous at early times than any other GRB afterglow in the pre-\emph{Swift} era, making it at these wavelengths the most luminous transient ever detected. Given the intrinsic properties of GRB 050904 and its afterglow, we discuss if this burst is markedly different from other GRBs at lower redshifts.Comment: The Astronomical Journal, in press; revised version, including the comments of the referee (one figure added, text restructured, all conclusions unchanged), 7 pages, 3 figure

    Estimating Photometric Redshifts Using Support Vector Machines

    Full text link
    We present a new approach to obtaining photometric redshifts using a kernel learning technique called Support Vector Machines (SVMs). Unlike traditional spectral energy distribution fitting, this technique requires a large and representative training set. When one is available, however, it is likely to produce results that are comparable to the best obtained using template fitting and artificial neural networks. Additional photometric parameters such as morphology, size and surface brightness can be easily incorporated. The technique is demonstrated using samples of galaxies from the Sloan Digital Sky Survey Data Release 2 and the hybrid galaxy formation code GalICS. The RMS error in redshift estimation is <0.03<0.03 for both samples. The strengths and limitations of the technique are assessed.Comment: 10 pages, 3 figures, to appear in the PASP, minor typos fixed to make consistent with published versio

    Far-Infrared Spectral Energy Distributions and Photometric Redshifts of Dusty Galaxies

    Full text link
    We infer the large-scale source parameters of dusty galaxies from their observed spectral energy distributions (SEDs) using the analytic radiative transfer methodology presented in Chakrabarti & McKee (2005). For local ultra-luminous infrared galaxies (ULIRGs), we show that the millimeter to far-infrared (FIR) SEDs can be well fit using the standard dust opacity index of 2 when self-consistent radiative transfer solutions are employed, indicating that the cold dust in local ULIRGs can be described by a single grain model. We develop a method for determining photometric redshifts of ULIRGs and sub-mm galaxies from the millimeter-FIR SED; the resulting value of 1+z1+z is typically accurate to about 10%. As such, it is comparable to the accuracy of near-IR photometric redshifts and provides a complementary means of deriving redshifts from far-IR data, such as that from the upcoming HerschelSpaceObservatory\it{Herschel Space Observatory}. Since our analytic radiative transfer solution is developed for homogeneous, spherically symmetric, centrally heated, dusty sources, it is relevant for infrared bright galaxies that are primarily powered by compact sources of luminosity that are embedded in a dusty envelope. We discuss how deviations from spherical symmetry may affect the applicability of our solution, and we contrast our self-consistent analytic solution with standard approximations to demonstrate the main differences.Comment: 37 pages, 14 Figures, 3 Tables, submitted to ApJ. submitted to Ap
    • 

    corecore